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Abstract 

A formalism is developed for estimating phase errors 
during refinement using non-crystallographic sym- 
metry, solvent flattening or density modification. This 
formalism, based on a separation of all structure 
factors into known (best estimate) and unknown (ran- 
dom variable) parts, leads directly to simple 
expressions for the propagation of phase errors dur- 
ing a refinement process. Phase extension and treat- 
ment of unmeasured reflections are readily incorpor- 
ated into this scheme. The formulation provides a 
direct method for evaluating the success of a 
refinement process. This may be useful in cases where 
examination of the resulting electron density map 
does not provide a quantitative evaluation of the 
calculations, such as at low to moderate resolution 
or when phase extension has been used. It may also 
provide a basis for designing optimal refinement 
strategies. 

Introduction 

It is becoming common in crystallographic studies of 
macromolecules to use density modification, non- 
crystallographic symmetry and solvent flattening to 
improve electron density maps or to extend and refine 
initial phase sets. These refinement strategies benefit 
from a weighting scheme in which accurately phased 
reflections are included in the calculation of the elec- 

tron density map with higher weights than poorly 
phased reflections (e.g. Sim, 1959; Bricogne, 1976; 
Rayment, Baker & Caspar, 1983). Estimation of errors 
in the initial phase sets as obtained, for instance, by 
isomorphous replacement, can be calculated taking 
into account observational errors and lack of closure 
(e.g. Blow & Crick, 1956; Dickerson, Kendrew & 
Strandberg, 1961). Errors during refinement have gen- 
erally been estimated by some variation of the method 
put forth initially by Sim (1959) who calculated the 
phase errors resulting from using a partial structure 
for the calculation of structure factors. In most appli- 
cations the electron density map being refined cannot 
be divided into known and unknown regions. Con- 
sequently, the phase error is estimated by some 
measure of the mean discrepancy between calculated 
and observed intensities (e.g. Hendrickson & 
Lattmann, 1970; Bricogne, 1976). Although these 
measures provide good relative estimates of the 
decrease in phase error during refinement (as judged 
from the corresponding electron density maps), they 
are not absolute measures, and the success of a 
refinement procedure is usually based on the inter- 
pretability of the resulting electron density map. This 
leaves open the question of the reliability of the 
results, particularly at low resolution or after phase 
extension. 

In this paper, the reciprocal-space formalism first 
put forward by Crowther (1967, 1969) is used as a 
starting point for deriving simple expressions for 
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errors in phase estimates made during refinement 
using density modification, solvent flattening or non- 
crystallographic symmetry. The expressions for phase 
errors are based not on partial information in real 
space [as was Sim's (1959) formulation], but on par- 
tial information in reciprocal space. 

Formulation of the problem 

Formally, the relationship among structure factors 
due to the presence of non-crystallographic symmetry 
axes can be expressed in reciprocal space as (Crow- 
ther, 1967, 1969) 

F ' =  HF,  (I) 

where F is a vector containing the structure factors 
and H is a Hermitian matrix. F' is the vector of 
structure factors after application of H which, in the 
case of well determined amplitudes, is equal to F. 
With appropriate modification of the components of 
H, (1) is also applicable to molecular replacement or 
to any solvent flattening or density modification 
schemes that can be expressed as 

p'(x) = b(x)p(x),  (2) 

where p(x) is the density before modification, p'(x) 
is the density after modification and b(x) is the 
modification function. For instance, in solvent flatten- 
ing, when the density map has been scaled to make 
solvent density equal to zero, b(x) will be equal to 
unity inside the molecular envelope and zero outside 
the envelope. In that case, (1) represents a convolu- 
tion in which H is the Fourier transform of b(x) and 
(1) is the Fourier transform of (2). 

If (1) is rewritten in terms of the vector and matrix 
components 

F~ = • I-Ij~,F:, (3) 
k 

where Fj is the value of the structure factor of the 
j th  reflection and the sum is over all structure factors, 
k. In any useful case no diagonal component,  H~, 
will be equal to unity. The question being addressed 
here is: Given a set of structure factors containing 
errors, to what extent will the application of the matrix 
H decrease those errors? 

Errors in the estimation of amplitudes 

In order to investigate the propagation of errors dur- 
ing refinement it is useful to break up each structure 
factor into a known part and an unknown part. This 
is analogous to the real-space procedure of breaking 
up the structure into a known part and an unknown 
part (Sim, 1959). The known part of a structure factor 
can be taken to be the best current estimate Fie of 
the amplitude F i. For instance, this estimate might 
be taken to be the centroid of the probability distribu- 

tion for Fj in the complex plane (Blow & Crick, 1959). 
In general, the magnitude of the current best estimate 
will be less than the observed magnitude 

IFjel < IFjol. (4) 

The unknown part, 8Fj, is a random complex number. 
The value of F;e calculated from the application 

of H to the current best estimates, Fk,, of the structure 
factors Fk is given by 

F;e= E ItjkF~ (5) 
k 

and the errors in these calculated values will be 

8Fj = ~'. I-Ijk 3Fk. (6) 
k 

The error in the calculated value, 3Fj, is a random 
variable, different from 3Fj as shown in Fig. 1. In 
particular the distribution of 3F~ explicitly takes into 
account the measured amplitude, I Fjol. The probabil- 
ity distribution of 3Fj can be calculated since it is 
the sum of a large number of random variables, 3Fa, 
with known distributions. When the number of reflec- 
tions in the sum is large, the probability distribution 
of 3F~ can be estimated accurately from the standard 
deviations of the distributions of all reflections. The 
sum in (6) can be thought of as a two-dimensional 

Fig. 1. Diagram of the complex plane showing hypothetical distri- 
butions for Fj, F~ and F~' in terms of best estimates of these 
values, F~e, F~e and F~'~, and their uncertainties, 8Fj, 8F~ and 
8Fj', for a reflection of measured amplitude I~ol. One round of 
refinement involves calculation of F~" and 8F~' from the values 
of Fie and 8Fj, with intermediate calculation of Fie and 3F~. 
F~e is calculated from all Fk~ as in (5). This calculation will 
result in a structure factor F~e with a phase different from Fi~ 
and a magnitude inconsistent with the measured IFjol. The uncer- 
tainty in this new estimate is 3F~ and has a probability distribu- 
tion as given in (7). To make this estimate consistent with the 
measured I Fjol, the probability distribution for 8F~ is projected 
onto the circle of radius I~ol and the probability of a phase 
error ¢~.' is calculated. From this phase-error distribution both 
the variance in the amplitude, 8F~', and the best estimate, F~', 
for the reflection can be calculated. 
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random flight with step sizes (njk ~Vk). This situation 
has been analyzed extensively (Chandrasekhar, 1943; 
Watson, 1944). It can be shown that the probability 
of the sum in (6) having a magnitude 18F51 and a 
phase, @, is approximately equal to 

p(lSF$l, @) = [zr Y. n2kcr2(SFk)] -1 

BE' 2 

where o'(SFk) is the standard deviation (radius of 
gyration) of the distribution of 8Fk. This distribution 
is, of course, independent of ~. Fig. 1 shows the 
relationship between the unknown phase of the reflec- 
tion Fj, the calculated value Fie, and the calculated 
uncertainty 8FJ. If this calculated distribution is com- 
bined with the measured amplitude, the probability 
that the phase of reflection Fj deviates from that 
calculated from (5) by an angle cJ' is given by 

p(~oJ') oc exp [2lFjollFjel cos 'PS'/Y, n~k°'E(SFJ)] • (8) 
k 

For small phase errors, where the approximation 
cos ¢p -~ 1 - tp2/2 is valid over much of the distribution, 
the variance in the phase distribution can be calcu- 
lated to be 

o,2(~y) = Y~ H2kcr2(,~Fj)/2lFjol IFjel. (9) 
k 

With the assumption of accurate measurement of I Fjo I, 
this results in a new estimate for the variance in the 
amplitude 8Fj' (Blow & Crick, 1959), 

(10) 

With this relationship it is possible to calculate a set 
of variances for the estimates of amplitudes obtained 
by a single application of the matrix H. Consequently, 
this equation can be used to monitor the propagation 
of errors with the application of H. 

Equation (8) is similar in form to that due to Sim 
(1959) which, in this notation, can be written 
(Bricogne, 1976) 

p(,pj)ocexp[21FjollFJelcos,p#(I,,)], (11) 

where (I,,) is the mean intensity contributed by the 
unknown part of the structure. In the formulation 
presented here, the mean intensity contributed by the 
unknown part of the structure is replaced by the mean 
intensity contributed by the unknown parts of the 
reflections. By moving the analysis from real space 
to reciprocal space, the separation of the structural 
information into known and unknown parts becomes 
easier for many applications. 

Phase refinement 

A phase refinement scheme can be constructed using 
an iterative application of the real-space constraints 
expressed in H such that 

j(. n + 1 ) { ~  o o 

(12) 
In other words, the (n + 1)th estimate of Fj will have 
a magnitude as measured and a phase as estimated 
from the sum Y~k u u,~-)~(-) • "jk" k "k  based on the nth esti- 
mates of the Fk. This is quite standard. The W(k n) are 
weighting factors. They should be chosen to minimize 
the random (unknown) part of the structure factor. 
The variance, cr2(SFk), of the distribution of 8Fk is 
minimized if V~k n) is chosen such that the product 
W(n) ~,(n) k "k  is at the centroid of the probability distribu- 
tion for F(k ~). This is the choice for which (10) is most 
accurate. In this case, from (9), 

~=(~J~))=Z n~ko=(SF~"-'))/21Fjol IF)~)l (13) 
J 

and (following Blow & Crick, 1959) 

W<~) = exp [-(1/2)tr2(g~)"))] (14) 

exp 2 2 (,,-,) F 

(15) 

With these weighting factors, the propagation of 
errors in amplitude in the refinement scheme (12) is 
expressed, as in (10), as 

cr2[SFJn+x)]2 = [Fso[2 

(16) 

Although the expression for amplitude errors does 
not explicitly depend on weighting factors, the pres- 
ence of IFJ"+~)I in the expression indicates that they 
will have an effect. Experience indicates that this is so. 

Phase extension 

Phase extension is readily incorporated into this 
scheme of phase refinement by noting that the proba- 
bility distribution for an unphased reflection has a 
centroid at the origin and a standard deviation (radius 
of gyration) equal to [Fjo]. That is, for an unphased 
reflection cr2(SFk)=lFkol ~ and Wk=O. This means 
that unphased reflections do not contribute to the 
estimates for the amplitudes of other reflections (since 
Wk = 0), but they do contribute to estimates for the 
errors in the amplitudes of other reflections. This is 
most important: Exclusion of measurable unphased 
reflections from the refinement process will result in 
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underestimation of the phase errors of other reflec- 
tions. Including all measurable reflections in a 
refinement process is the only way to ensure correct 
estimation of phase errors. 

Unmeasured reflections 

It has been found that ignoring unmeasured reflec- 
tions may severely inhibit a phase refinement (Ray- 
ment et al., 1983). In the formulation presented here, 
the best estimate for the amplitude of an unmeasured 
reflection is F~e as given by (5), the probability distri- 
bution for the uncertainty, 8Fj, of this estimate is 
given by (7). The variance of this distribution is 

o'2[SFJ "+~)] (1 /2 )~  2 2 (n) 
= HjkO" ( S F k ) ,  (17) 

k 

which for small errors is the same relationship as (10) 
with IF~"+I)I = [Fjol. These values can be used in the 
refinement process for unmeasured reflections in the 
same way that the estimates from (12) and (16) are 
used for measured reflections. 

Concluding remarks 

It has been shown here that a simple method exists 
for breaking up the structure factors into known and 
unknown parts in order to make estimates of the 
errors of all reflections during a refinement. The 
known part of a structure factor is the current best 
estimate for that structure factor and the unknown 
part is a random variable about the best estimate. 
Because a useful refinement technique will always 
express a given reflection in terms of a sum of many 
other reflections, the detailed probability distribution 
for each reflection usually need not be considered. 
This formulation provides an estimate of the phase 
probability distribution [(8)] exactly analogous to 
that of Sim (1959) but using reciprocal-space quan- 
tities more readily determined in many crystallo- 
graphic applications. This expression for phase errors 
can then be used in a manner completely consistent 
with most phase-refinement techniques to monitor 
propagation of error during refinement. The structure 
of the equations expressing the error propagation is 

such that completely unphased reflections and 
unmeasured reflections can be readily incorporated 
into the process. In fact, the equations estimating 
phase errors indicate that ignoring unphased reflec- 
tions will always lead to underestimates of phase 
errors. 

The ability to monitor propagation of phase errors 
during refinement leads inevitably to the question of 
how little initial phase information is required for a 
particular constraint matrix, H. Since the weighting 
factors for unphased reflections are necessarily zero, 
the form of the equations explicitly precludes ab initio 
phasing. But the possibility of bootstrapping from a 
very limited phase set is not necessarily precluded. 
By monitoring phase errors during refinement it may 
also be possible to design optimal strategies for phase 
extension. For instance, it will be possible to bring 
additional reflections into the calculation by slowly 
increasing their weights based on estimates of errors 
in their amplitude. This is likely to produce a more 
efficient phase extension scheme than stepping out 
an arbitrary number of reciprocal-lattice lengths every 
few rounds of refinement. The formulation presented 
here makes possible a quantitative approach to 
designing optimal refinement strategies. 
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